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Abstract

This work aims to recreate the Feynman the path integral approach used in Quan-

tum Field Theory in a reaction-diffusion process on a lattice. The evolution of the

system is given by a master equation which describes the change in the probability of

the lattice being in a certain configuration. Creation and annihilation operators are

then introduced, allowing us to apply second quantisation to our theory. I treat the

source term perturbatively, and compute correlation functions. The branching term

is then introduced and perturbative expansion is again invoked to find the correlation

functions. The results are then presented diagramatically using Feynman diagrams.

Finally, I conclude the work with a set of propsed Feynman rules.
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Chapter 1

Introduction

1.1 History 101

1.1.1 Stochastic Processes

In the first 10 years of the 20th century, statistics and probability were barely regarded

as a mathematical theories in their own right. On the probability theory side, all there

was was the work of Laplace (which was not regarded as mathematically rigorous).

Then it began developing as independent theories from multiple Russian mathemati-

cians, such as Pafnuty Chebyshev, Andrey Markov, and Aleksandr Lyapunov, but was

never a whole theory. In the 1920s, Richard von Mises, after a failed attempt to unify

probability theory, claimed that it was not a mathematical theory. On the statistics

side of things, the situation was the same. It was regarded as a field relating to col-

lecting large amounts of data regarding demographic and economic facts rather than

a mathematical theory.

The earliest trace of stochastic Poisson processes was in a paper from 1903 by F.

Lundberg. He later developed a theory of risk which is now regarded as a particular

kind of stochastic process with independent increments. In the 1920s, Jarl Waldemar

Lindeberg worked on the central limit theorem by developing the Lindeberg condi-
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1.1. HISTORY 101 Chapter 1. Introduction

tions, which in the 10 years after were proved by William Feller to be necessary for

the validity of the central limit theory in certain conditions. During around the same

time, Norbert Wiener published a paper about the Wiener measure, which is the mod-

ern day Brownian motion process. In 1925, Paul Lévy published a probability theory

book which satisfies the mathematical rigour required. During the entirety of the

1920s, the probability theory techniques were developed such that by the 1930s these

techniques were well known among the community of mathematicians interested in

this field. During the same period, the field of statistics was also rapidly developing.

R.A. Fisher and others published multiple works on multidimensional distributions,

correlation, and estimation. By the end of the 1920s, the field was drastically trans-

formed by the well-known works of Jerzy Neyman and Egon Pearson.

In the first years of the 1930s, there was a breakthrough in the field of probability

from the works of Paul Lévy, Aleksandr Khinchin, and especially Andrey Kolmogorov;

his work gave an entire new approach to using measure theory. These laid the foun-

dations of probability theory. In 1934, Will Feller published his work on the central

limit theorem and Markov processes, building on the recently published work of An-

drey Kolmogorov, resulting in the foundations of the Markov process. Also during

that year, Aleksandr Khinchin introduced stationary stochastic processes and proved

some of its fundamental propositions. Another notable contributor to probability the-

ory was Francesco Paolo Cantelli, he had published multiple valuable papers in this

area. During the Second World War, Harald Cramér began writing his book on the

mathematical methods of statistics, in which he attempted to show how statistical

methods could be founded on a mathematical probability theory. After the Second

World War, the theory of stochastic processes was booming, with many applications

of it in different fields coming up. In 1950, Ulf Grenander wrote his thesis on using

statistical inferences in stochastic processes, a field in which he was regarded to be a

pioneer [1].
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Chapter 1. Introduction 1.1. HISTORY 101

1.1.2 Quantum Field Theory

From mid 1925 to early 1927, Werner Heisenberg, Erwin Schrödinger, and Max Born

independently laid the foundations of non-relativistic quantum mechanics with the

discovery of the Schrödinger equation and the uncertainty principle. This kick-started

the formation of Quantum Field Theory; physicists including Werner Heisenberg, Pas-

cual Jordan, Wolfgang Pauli, and Paul Dirac were putting their efforts in quantising

the electromagnetic field and exploring relativistic quantum mechanics.

By by the early 1930s, physicists faced the ever-so-prominent divergence issues in

QFT. However, their bewilderment was interrupted by the outbreak of the Second

World War. Afterwards, in the late 1940s, younger physicists used their numerical and

engineering skills that were cultivated during the war to find experimental evidence

supporting QFT. Later on in 1947 and 1948, Julian Schwinger and Richard Feyn-

man formulated multiple renormalisation techniques to solve the issue of divergences

in quantum electrodynamics. In late 1949, Freeman Dyson showed the equivalence

between both Feynman and Schwinger’s approaches, and further proved that renor-

malisation works at arbitrary perturbative order in QED.

Although the field was quickly advancing, there were more issues that arose. For ex-

ample, in 1957, experimental evidence showed that parity symmetry was violated in

weak force interactions, which led to Murray Gell-Mann, Richard Feynman, and a few

other theorists to publish parity violating models. However, these theories showcased

unwanted behaviour at high energies, which led physicists such as Sheldon Glashow

and Julian Schwinger to resort to C.N. Yang and Robert Mills’ suggestion that nuclear

forces were mediated by force-carrying particle that obey a gauge symmetry.

However, issues with the mass of these force-carrying particles arose. As a result, physi-

cists spent the late 1950s to the mid-1960s studying spontaneous symmetry breaking,

resulting in what we know now as the Higgs mechanism. Meanwhile, Feynman’s path

integral techniques, which he developed in his PhD thesis in the 1940s, attracted the

3



1.2. AN UNCONVENTIONAL MARRIAGE Chapter 1. Introduction

attention of the theoretical physics community, particularly for its use in models with

non-trivial gauge structure.

Additionally, physicists were unsure of how to approach strongly coupled particles,

as the aforementioned perturbative model only applied to weak coupling. During the

1970s, Yoichiro Nambu, Murray Gell-Mann, and Harald Fritzsch introduced quantum

chromodynamics, presenting a systematic way to deal with these strong couplings.

Amidst all this, the previous work of Sheldon Glashow, Steven Weinberg, and Ab-

dus Salam unifying electromagnetic and weak interactions began to attract attention.

The electroweak theory along with QCD came together to form the Standard Model

of particle physics, all thanks to QFT [2].

1.2 An Unconventional Marriage

Field theoric methods and the renormalisation group (RG) have provided a lot of in-

sight in the realm of statistical physics. Scaling ideas led to a profound understanding

of critical singularities near continuous phase transitions in thermal equilibrium. The

dynamic scaling hypothesis, which generalises the scaling ansatz fort the static corre-

lation function and introduces an additional dynamic critical exponent was successful

in describing experiments of time-dependent properties near second order phase tran-

sitions in thermal equilibrium.

The RG method in critical phenomena has provided a solid conceptual foundation for

phenomenological scaling theories. This was backed by exact solutions from some ide-

alized models and computer simulations as well as experimental evidence. In addition

to providing a framework for static and dynamical properties near a critical point,

RG also enables us to describe the large-scale and low frequency response in stable

thermodynamic phases, as well as phase transitions at zero temperatures driven by

quantum fluctuations. Additionally, RG and scaling concepts look to be promising in

describing phenomena for far from equilibrium systems [3].
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Chapter 1. Introduction 1.3. OVERVIEW OF THIS WORK

1.3 Overview of this Work

In this work, we attempt to apply the concepts of field theory, namely path integrals, to

particles hopping on a lattice. The transfer of our particles between lattice sites occurs

as a random walk, therefore, in the first chapter we introduce the basics of Stochastic

processes and discuss the special cases of the Markovian and Poisson processes that

lie behind the idea of a random walk. In the second chapter we derive our master

equation that describes the change in the probability of our lattice having the desired

configuration. This will act as an analogue to our Hamiltonian, allowing us to write

a Schrödinger-like equation and second quantising our theory in the same manner as

in QFT. We then compute our path integral in chapter 4 allowing us to find a form

for our operator expectation value. Finally, in chapter 5 we introduce the concept

of branching and derive the Feynman rules for our system. Throughout this work,

there is an emphasis on how our results compare to those of QFT. Multiple references

were resorted to in the making of this thesis, specifically Prof. Gunnar Pruessner’s

notes titled None Equilibrium Statistical Mechanics [4], which was the main reference

followed.
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Chapter 2

Background

In this chapter, we will introduce some basic concepts to help us better understand

the nature of the system we will be tackling in this work. Our study is on particles

hopping in a lattice, and since the dynamics of our particles is stochastic, i.e. of random

nature, we will begin this chapter by defining what a stochastic process is. Then we

analyse what it means for a variable to be ”random”, and introduce the special Markov

property, which showcases how the occurrence of a future state depends only on the

present state and not on the past states [5][6]. Afterwards, we introduce an example

of a Markovian process; random walks. They are a key concept for this work since our

particles execute random walks are they transport throughout the lattice [7]. Finally,

we look at the Poisson distribution,

2.1 Stochastic Processes

A stochastic process is the formal representation of real systems whole evolution in

time or space can be assumed as random [5]. It is defined as a function Y of both time

t and a stochastic variable X, which we define in the following subsection [8]

YX(t) = f(X, t) (2.1)

7



2.2. MARKOV PROCESS Chapter 2. Background

2.1.1 Random Events

Consider a discrete set of random points labelled on a time axis, such as the counts in

a Geiger counter. This random set of points is called a stochastic variable. Its sample

space consists of states, each state containing a nonnegative integer s, and for each s

a set of s real numbers ti such that

∞ < t1 < t2 < ... < ts <∞ (2.2)

Note that this is analogous to the definition of a Fock space [6]. The probability

distribution function in the domain (2.2) is given by Qs(t1, t2, ..., ts). By imposing

that a permutation of the times (t1, t2, ..., ts) corresponds to the same state, we are no

longer constrained by (2.2) and ti is allowed to range form −∞ to ∞. As a consequence,

we are able to write our normalisation condition as [6]

Q0 +
∞∑
s=1

1

s!

∫ ∞

−∞
dt1dt2...dtsQs(t1, t2, ..., ts) = 1 (2.3)

The average is 〈A〉 is then given by [6]

〈A〉 = A0Q0 +
∞∑
s=1

1

s!

∫ ∞

−∞
dt1dt2...dtsQs(t1, t2, ..., ts)As(t1, t2, ..., ts) (2.4)

2.2 Markov Process

The Markov process is a stochastic process with the Markov property, which states

that the probability density at time tn depends only on the value at the most recent

time yn−1 and does not depend on the values at earlier times [9].

P1|n−1(yn, tn|y1, t1; ...; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) (2.5)

8



Chapter 2. Background 2.2. MARKOV PROCESS

Where P1|1 is called the transition probability. Pj(yj, tj; yi, ti) is the joint probability

density function which describes the probability of observing yi at ti and yj at tj. It

is given by the following relation

[4]P1|1(y2, t2|y1, t1) =
P2(y2, t2; y1, t1)

P1(y1, t1)
=
P1|1(y1, t1|y2, t2)P1(y2, t2)

P1(y1, t1)
(2.6)

An interesting property of Markov processes is that they are fully determined by the

initial distribution and the transition probability [7]. For example

P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y2, t2)P1|2(y3, t3|y1, t1; y2, t2)

= P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) (2.7)

Where we have used Bayes theorem. Integrating this result over y2

∫
dy2P2(y1, t1; y2, t2)P1|2(y3, t3|y1, t1; y2, t2)

= P1(y1, t1)

∫
dy2P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) (2.8)

Dividing by P1(y1, t1) and using the identity

P1(y2, t2) =

∫
dy1P1|1(y2, t2|y1, t1)P1(y1, t1) (2.9)

Equation (2.8) becomes

P1|1(y3, t3|y1, t1) =
∫
dy2P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) (2.10)

Which is known as the Chapman-Kolomogrov equation [10][4].

9



2.3. RANDOM WALKS Chapter 2. Background

2.3 Random Walks

Random walks are an important example of a Markovian process in which transitions

can only happen to neighbouring states [11][12]. For discretised space and time, a

random walker can move from one point to another in every discrete time step [13].

The probability density that a walker is located at point y after n steps is given by

P (y;n) =

∫ ∞

−∞
f(y − y′)P (y′;n− 1)dy′ (2.11)

This means the probability of finding a particle at position y after n steps is the

probability of the particle arriving at y′ in n − 1 steps and making up the difference

in displacements y − y′ in one additional step [14]. Lets define the Fourier transform

and the inverse Fourier transform respectively as

P̃ (k;n) =

∫ ∞

−∞
P (y;n)e−ikydy (2.12)

P (y;n) =
1

2π

∫ ∞

−∞
P̃ (k;n)eikydk (2.13)

From (2.11), we can infer the following

P̃ (k;n) = f̃(k)P̃ (k;n− 1) (2.14)

so that

P̃ (k;n) = f̃(k)P̃ (k;n− 1) = f̃ 2(k)P̃ (k;n− 2) = ... = f̃n(k) (2.15)

The inverse Fourier transform of (2.15) then gives

P (y;n) =
1

2π

∫ ∞

−∞

(
f̃(k)

)n
eikydk (2.16)

10



Chapter 2. Background 2.4. THE POISSON DISTRIBUTION

If the first two moments of f̃(k) are finite as n→ ∞, P (y;n) converges to a Gaussian

P (y;n) =
1

(2πDn)
1
2

e−
(y−vn)2

4Dn (2.17)

Where v ≡ 〈r〉 and D = 〈(r−〈r〉)2〉
2

and r is the step size [5].

2.4 The Poisson Distribution

The Poisson distribution is the special case that occurs when our aforementioned

random dots are independent [4], meaning Qs factorizes as such

Qs(t1, t2, ..., ts) = e−vq(t1)q(t2)...q(ts), Q0 = e−v (2.18)

Where q is a nonnegative integrable function and the normalisation condition gives

v =

∫ ∞

−∞
q(t)dt (2.19)

The Poisson distribution, defined as the probability distribution of s independent

random dots/events falling in a limited interval, is given by [6]

ps =
〈s〉s

s!
e−〈s〉 (2.20)

A collection of Markovian random walks converges to a Poisson processes [15].

11





Chapter 3

Reaction-Diffusion Field Theory

3.1 General Overview

Our focus in this thesis will be on studying the reaction-diffusion process generated

from particles hopping on a lattice. Reaction and diffusion is a non-equilibrum stochas-

tic process, with certain quantities being invariant if the full dynamics of the system

is considered [16]. Before proceeding to tackle this problem, let us set the scene. Our

system is time-dependent, and at finite temperature. Our particles are classical ones,

and they reside on a d-dimensional hypercubic lattice [17]. A particle in our lattice

chooses with rate H a random site to migrate to (random walks). We will restrict our

system to the diffusion of one species of particles, for simplicity. Later on we will look

at branching, the statistical mechanics analogue to scattering.

3.1.1 On the Doi-Peliti Approach

In order to find a description of the evolution of our system, we will resort to the Doi-

Peliti approach, also knows as the coherent state path integral [18]. The Doi-Peliti

approach is done by constructing a master equation from a set of rules, which would be

the rate of change of the probability of our lattice having a certain number of particles

at a specific site, and later on using perturbation theory methods [18][19]. The master

13



3.2. THE MASTER EQUATION Chapter 3. Reaction-Diffusion Field Theory

equation is going to act as the mirror of the Hamiltonian in Quantum Field Theory.

We then move on to defining our creation and annihilation operators, allowing us to

second quantise our master equation. What makes this approach unique is that it

preserves the entity of our particles, which is something we lose when resorting to

traditional ”coarse-graining” techniques [20].

3.2 The Master Equation

Define the state of the system as the number of particles at each lattice site {nj}. This

is to say that n particles are found at the sight j. If we only consider diffusion, our

particles are just allowed to jump to a random neighbouring sight [21]. We want to

find the change in the probability of our system being in a specific state. Beginning

with a simple example, lets focus on two neighbouring lattice sites. Assume we want to

find the change in the probability of one particle residing in j = 1 and zero particles

in j = 2. The influx towards achieving that configuration would be if our particle

which is residing in j = 2 (i.e. {nj+e} where e is our unit vector representing one

lattice spacing) would jump with rate Q to j = 1. The outflow however would be if

the particle was in fact in the site j = 1 (i.e, {nj}), but decided to jump with rate Q

to the site j = 2. The master equation is then [22]

d

dt
P ({n1}; t) = QP ({n2}; t)−QP ({n1}; t) (3.1)

Generalising this to our d-dimensional lattice, the total influx to the probability of our

system being in the state {nj} is

Q
∑
e

∑
i

(ni+e + 1)P ({ni − 1, ni+e + 1}; t) (3.2)

14



Chapter 3. Reaction-Diffusion Field Theory 3.2. THE MASTER EQUATION

Where q is the number of neighbours and we multiply by (ni+e+1) since each particle

at the site i + e could jump to the neighbouring site. The outflow is given by

Q
∑
i

niP ({nj}; t) (3.3)

This gives us the following master equation 1

d

dt
P ({nj}; t) =

Q

q

∑
e

∑
i

(ni+e+1)P ({ni−1, ni+e+1}; t)−Q
∑
i

niP ({nj}; t) (3.4)

In order to take into account the limited size of our lattice, we must impose a boundary

condition P{ni} = 0 if {ni} contains particles residing outside our lattice. Addition-

ally, we must specify that we cannot have a negative number of particles in a lattice

site, i.e. P{ni} = 0 if ni < 0.

Now we must consider particle extinction with rate ε. This would be if the number of

particles in site j went down by 1, so our master equation for extinction is

d

dt
P ({nj}; t) = ε

∑
i

(
(ni + 1)P ({ni + 1}; t)− niP ({nj}; t)

)
(3.5)

Finally, we consider a lattice system with particle creation (which we interpret as a

source term); meaning a particle can be created with rate β at any lattice site. The

master equation for particle creation is

β
∑
i

(
P ({ni − 1}; t)− P ({nj}; t)

)
(3.6)

Combining these three factors together, which we can do since they are independent

Poisson processes [4], we get a final master equation describing particles subject to

diffusion, extinction, and creation on a lattice

1Be warned that the notation is slightly abusive

15



3.3. SECOND QUANTISATION Chapter 3. Reaction-Diffusion Field Theory

d

dt
P ({nj}; t) =

Q

q

∑
e

∑
i

(
(ni+e + 1)P ({ni − 1, ni+e + 1}; t)− qniP ({nj}; t)

)
+ ε

∑
i

(
(ni + 1)P ({ni + 1}; t)− niP ({nj}; t)

)
+ β

∑
i

(
P ({ni − 1}; t)− P ({nj}; t)

)
(3.7)

Great! Now we have an equation describing the change in the probability of our lattice

configuration, analogous to the Hamiltonian (for the fellow Heisenbergs reading this)

which describes the total energy of the system. Following in the footsteps of Quantum

Field Theory, we move on to second quantising our master equation to find what we

interpret to be our analogue to the Schrödinger equation.

3.3 Second Quantisation

3.3.1 States and Operators

To begin this process, we lay out all the artillery we will be needing inspired by those

of Quantum Field Theory, beginning with the Fock space. The Fock space is the set

of Hilbert spaces of a the vacuum state, a one particle state, a two particle state, and

so on [23]. We define our basis states for the Fock space as follows

|{nj}〉 =
∏
j

a†nj |0〉

Note that we are dropping the hats. This state describes the configuration of our

lattice, where a† is our creation operator. We can see from this definition that the

vacuum state |0〉 is obtained by setting nj = 0, meaning that no particles occupy any

lattice site.

16
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The orthogonality condition is given by the following relation

〈{nj}|{mj}〉 =
∏
j

δnj ,mj
(3.8)

We define the mixed state as follows [24]

|ψ(t)〉 =
∑
{nj}

P ({nj}; t)|{nj}〉 (3.9)

The state of a particular lattice configuration acting on the mixed state will then give

us the probability of our lattice being in that specific configuration

〈{nj}|ψ(t)〉 = P ({nj}; t) (3.10)

Going back to the creation operator we previously mentioned, we define it as the

operator that creates n particles at position j in our lattice, and the annihilation

operator as the operator that destroys said particle. They are given by the relations

[20]

a†(j)|nj〉 = |nj + 1〉 (3.11)

a(j)|nj〉 = nj|nj − 1〉 (3.12)

These operators satisfy the following commutation relations

[a(j), a†(k)] = δj,k (3.13)

[a†(j), a†(k)] = [a(j), a(k)] = 0 (3.14)

Using these we may define the particle number operator, whose eigenvalues give the

number of particles at site j [25]

a†(j)a(j)|{nj}〉 = nj|{nj}〉 (3.15)

17



3.3. SECOND QUANTISATION Chapter 3. Reaction-Diffusion Field Theory

We now move on to calculating expectation values. Beginning with the expected

particle number in a specific lattice site i, we should have

〈n〉(i; t) =
∑
{nj}

P ({nj}; t)ni (3.16)

Using (3.10), we can write (3.16) as

a†(i)a(i)|ψ(t)〉 =
∑
{nj}

P ({nj}; t)a†(i)a(i)|{nj}〉 =
∑
{nj}

P ({nj}; t)ni|{nj}〉 (3.17)

Which is close to what we would like to achieve. To proceed we need to introduce an

operator that projects all |{nj}〉 to unity

〈Ω| =
∑
n′
j

〈{n′
j}| (3.18)

Therefore

〈Ω|a†(i)a(i)|ψ(t)〉 =
∑
{n′

j}

∑
{nj}

P ({nj}; t)ni〈{n′
j}|{nj}〉

=
∑
{nj}

P ({nj}; t)ni = 〈n〉(i; t) (3.19)

A property of Ω is that it is invariant under a† from the right, meaning it is an

eigenvector of the creation operator [4]

〈Ω|a†(i) =
∞∑

nj=0

〈{nj}|a†(i) =
∞∑

nj=1

〈{nj − 1}|+ 0 = 〈Ω| (3.20)

using this fact, we can say

〈n〉(i; t) = 〈Ω|a(i)|ψ(t)〉 (3.21)
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3.3.2 Second Quantisation of the Master Equation

At this point, we are able to write our master equation, which we will label as H, as

a Hamiltonian in a Schrödinger-type equation [17],

d

dt
|ψ(t)〉 = H|ψ(t)〉 (3.22)

But first we must second quantise the master equation by promoting the states to

operators, and by assuming normal ordering (which makes apparent the preservation of

the particle entity by the DOI-Peliti approach [20]). Lets do this in detail. Beginning

with the diffusion term,

d

dt
|ψ(t)Q〉 = HQ|ψ(t)〉

=
Q

q

∑
e

∑
i

(
(ni+e + 1)P ({ni − 1, ni+e + 1}; t)− qniP ({nj}; t)

)
|{nj}〉 (3.23)

For the first term of (3.23), we can write our configuration {nj} as nj , nj+e [4], and

by using the definitions of the creation and annihilation operators we get

Q

q

∑
e

∑
i

(
(ni+e + 1)P ({ni − 1, ni+e + 1}; t)|nj , nj+e〉

)
=
Q

q

∑
e

∑
i

(
a†(i)(ni+e + 1)P ({ni − 1, ni+e + 1}; t)|nj − 1, nj+e〉

)
=
Q

q

∑
e

∑
i

(
a†(i)a(i + e)P ({ni − 1, ni+e + 1}; t)|nj − 1, nj+e + 1〉

)
=
Q

q
a†(i)a(i + e)|ψ(t)〉 (3.24)

The second term of (3.23) is quite straightforward, by quickly glancing at (3.17) we

see that it can be written as

∑
nj

niP ({nj}; t)|{nj}〉 = a†(i)a(i)|ψ(t)〉 (3.25)
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So the second quantised Schrödinger-like equation is then given by

HQ|ψ(t)Q〉 = Q
∑
i

∑
e

(
a†(i)a(i + e)− a†(i)a(i)

)
|ψ(t)〉

= Q
∑
i

∑
e

(
a†(i)(a(i + e)− a(i))

)
|ψ(t)〉 (3.26)

In order to proceed we must use the following identity [4]

(
a†(i)− a†(i + e)

)(
a(i + e)− a(i)

)
= a†(i)

(
a(i + e)− a(i)

)
+ a†(i + e)

(
a(i)− a(i + e)

)
(3.27)

This first term is what we have in (3.26), which, as we have previously stated, describes

the process of particles leaving the site i subtracted from particles hopping from the

site i + e to i in terms of the creation and annihilation operators. Comparing this

to the second term, we see that it describes particles hopping away from i + e and

hopping onto i + e from i. So the identity is the addition of two terms describing the

same process, where one is just shifted by e, and after the shift it just reproduces the

first term [4]. We can take advantage of this by dividing the unit vector in half, and

substituting in (3.26),

HQ|ψ(t)Q〉 =
Q

2

∑
i

∑
e

(
a†(i)− a†(i + e)

)(
a(i + e)− a(i)

)
|ψ(t)〉 (3.28)

Moving on to the creation equation, we have

d

dt
|ψ(t)β〉 = Hβ|ψ(t)〉 = β

∑
i

∑
{nj}

(
P ({ni − 1}; t)− P ({nj}; t)

)
|{nj}〉 (3.29)

With the first term being
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β
∑
i

∑
{nj}

P ({ni − 1}; t)|{nj}〉 = β
∑
i

∑
{nj}=0

a†(i)P ({ni − 1}; t)|{nj − 1}〉

= 0 + β
∑
i

∑
{nj}=1

a†(i)P ({ni − 1}; t)|{nj − 1}〉 (3.30)

Where we have enforced our aforementioned boundary condition of not allowing a

negative number of particles. The second term is simply the definition of our state

|ψ(t)〉, so the creation equation is

d

dt
|ψ(t)β〉 = β

∑
i

(a†(i)− 1)|ψ(t)〉 (3.31)

Finally, we look at the extinction equation

d

dt
|ψ(t)ε〉 = ε

∑
i

∑
{nj}

(
(ni + 1)P ({ni + 1}; t)− niP ({nj}; t)

)
|{nj}〉 (3.32)

The first term gives

ε
∑
i

∑
{nj}=0

(
(ni + 1)P ({nj + 1}; t)

)
|{nj}〉 = ε

∑
i

∑
{nj}=0

a(i)P ({nj + 1}; t)|{nj + 1}〉

(3.33)

Relabelling n+ 1 → n then using the fact that a|0〉, (3.33) becomes

ε
∑
i

∑
{nj}=1

a(i)P ({nj}; t)|{nj}〉 = ε
∑
i

∑
{nj}=0

a(i)P ({nj}; t)|{nj}〉 (3.34)

The second term is again, straightforward

ε
∑
i

∑
{nj}

niP ({nj}; t)|{nj}〉 = ε
∑
i

a†(i)a(i)|ψ(t)〉 (3.35)

So our extinction equation is

Hε|ψ(t)ε〉 = ε
∑
i

(
a(i)− a†(i)a(i)

)
|ψ(t)〉 (3.36)
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We can now finally write out the full form of our Schrödinger-type equation after

second quantising the master equation

d

dt
|ψ(t)〉 =

(Q
2

∑
i

∑
e

(
a†(i)− a†(i + e)

)(
a(i + e)− a(i)

)
+ β

∑
i

(a†(i)− 1)

+ ε
∑
i

(
a(i)− a†(i)a(i)

))
|ψ(t)〉 (3.37)

Now that we have set the base of our theory, we can move on to the fun part: finding

the path integral!
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Chapter 4

Finding the Path Integral

4.1 On the Essence of Path Integrals

In quantum mechanics, the path integral discretises time into N small steps, and

measures the superposition of every path the particle can take in the infinitesimal time

interval, then goes on to find the whole quantum amplitude of every path the particle

could take for every time interval [26]. To illustrate this, we look at the example of the

double slit experiment: A particle is travelling from point S to point O, and there is

between these points a screen with two slits, A1 and A2. The amplitude at point O is

a superposition of the path to A1 and the path to A2. Now imagine adding more slits,

the amplitude becomes the superposition of every path the particle can take. Now we

complicate things a bit more; imagine adding an infinite number of screens, with an

infinite number of slits. The quantum amplitude in this scenario is exactly what the

path integral computes [27]. Now that we have understood the essence of the path

integral, lets apply it to our lattice system.
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4.2 The Operator Expectation Value

Lets begin with the formal solution to our Schrödinger equation (5.20) [28]

|ψ(t)〉 = eHt|ψ(0)〉 (4.1)

We substitute this in our formula for the expected particle number (3.21)

〈n〉(i; t) = 〈Ω|a†(i)a(i)|ψ(t)〉 = 〈Ω|a†(i)a(i)eHt|ψ(0)〉 (4.2)

we can generalise this rule to find the expectation value of any operator

〈O〉(t) = 〈Ω|OeHt|ψ(t)〉 (4.3)

Using this, and keeping in mind that the expectation value of unity should be 1 [28],

we get

〈1〉(t) = 〈Ω|ψ(t)〉 = 〈Ω|eHt|ψ(0)〉 = 1 (4.4)

Expanding (4.4) in small t

〈Ω|1 +Ht+
(Ht)2

2!
+ ...|ψ(0)〉 = 1 (4.5)

〈Ω|ψ(0)〉+ 〈Ω|Ht+ (Ht)2

2!
+ ...|ψ(0)〉 = 1 (4.6)

since the Ω projects everything to 1, we have

〈Ω|ψ(0)〉 = 1 (4.7)

(4.6) then becomes

〈Ω|Ht+ (Ht)2

2!
+ ...|ψ(0)〉 = 0 (4.8)
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This allows us to say

〈Ω|Hn|ψ(0)〉 = 0 (4.9)

for all n ≥ 1.

Since H represents a change in probability Ṗ ({nj}; t), the fact that it must equal 0

reflects conservation of probability. Now lets tackle the time evolution operator. As

we have mentioned earlier, we begin by discretising time into N slices [22]. The time

evolution operator is then given by

e−Ht = lim
∆t→0

(1−H∆t)
t

∆t = (1−H(tn − tn−1))....(1−H(t1 − t0)) (4.10)

The resolution of unity for coherent states is given by [22]

∫
dφ(t)dφ∗(t)

π
e−φ∗(t)φ(t)eφ(t)a

†|0〉〈0|eφ∗(t)a (4.11)

We are able to insert (4.11) in (4.10) between each time slice

e−Ht =

( N∏
n=0

∫
dφ(tn)dφ

∗(tn)

π
e−φ∗(tn)φ(tn)

)(
eφ(tN )a†|0〉〈0|eφ∗(tN )a (4.12)

(
1−H(tN − tN−1)

)
eφ(tN−1)a

†|0〉....〈0|eφ(t1)a†
(
1−H(t1 − t0)

)
eφ(t0)a

†|0〉〈0|eφ∗(t0)a

)
(4.13)

To simplify things, lets compute each term by itself. Beginning with the time slice

from N − 1 to N

〈0|eφ∗(tN )a(1−H∆t)eφ(tN−1)a
†|0〉 (4.14)

= 〈0|eφ∗(tN )aeφ(tN−1)a
†|0〉 − 〈0|eφ∗(tN )aHeφ(tN−1)a

†|0〉 (4.15)

=
∞∑

k,m=0

φ∗mφk

k!
〈m|k〉 −∆t〈0|eφ(tN )aHeφ(tN−1)a

†|0〉 (4.16)

26



Chapter 4. Finding the Path Integral 4.2. THE OPERATOR EXPECTATION VALUE

Using

〈m|k〉 = δk,m

The first term becomes

∞∑
k,m=0

φ∗mφk

k!
δk,m =

∞∑
k=0

(
φ∗(tN−1)φ(tN)

)k
k!

= eφ(tN−1)φ(tN ) (4.17)

Where we have Taylor expanded eφa† and eφ∗a [29] and used the following property [4]

〈0|am = 〈m| (4.18)

a†k|0〉 = |k〉 (4.19)

To compute the second term, we make the assumption that the Hamiltonian is a

function of creation and annihilation operators, i.e H = a†γaσ where γ, σ ≥ 0 [4]. This

gives us

∆t〈0|eφ∗(tN )aHeφ(tN−1)a
†|0〉 (4.20)

= ∆t
∞∑

k=σ,m=γ

φ∗(tN−1)
mφ(tN)

k

k!

k!

(k − σ)!
δm−γ,k−σ (4.21)

= ∆t
∞∑

k,m=0

φ∗(tN−1)
m+γφ(tN)

k+σ

k!

k!

(k − σ)!
δm,k (4.22)

= ∆tφ∗(tN−1)
γφ(tN)

σ

∞∑
k,m=0

φ∗(tN−1)
mφ(tN)

k

k!
δm,k (4.23)

= ∆tφ∗(tN−1)
γφ(tN)

σeφ
∗(tN−1)φ(tN ) (4.24)

Thus, (4.16) becomes

eφ
∗(tN−1)φ(tN ) −∆tφ∗(tN−1)

γφ(tN)
σeφ

∗(tN−1)φ(tN ) (4.25)

= eφ
∗(tN−1)φ(tN )(1−∆tφ∗(tN−1)

γφ(tN)
σ) (4.26)
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We now multiply (4.26) by the e−φ∗(tN−1)φ(tN−1) term to get

eφ
∗(tN−1)φ(tN )−φ∗(tN−1)φ(tN−1)(1−∆tφ∗(tN−1)

γφ(tN)
σ) (4.27)

Taking the continuum limit ∆t→ 0

N−1∏
n=0

eφ
∗(tn−1)φ(tn)−φ∗(tn−1)φ(tn−1) ≈ e−

∫
dtφ∂tφ∗ (4.28)

The remaining terms in (4.13) are

e−
∫
dtφ∂tφ∗

( N∏
n=0

∫
dφ(tn)dφ

∗(tn)

π

)
e−φ∗(tN )φ(tN )

(N−1∏
n=0

(1−∆tφ∗(tn−1)
γφ(tn)

σ
)
eφ(tN )a†|0〉〈0|eφ∗(t0)a (4.29)

Now that we have an expression for our time evolution operator, lets try and compute

the expectation value of an operator

〈O〉(t) = 〈Ω|Oe−HtJ |0〉 (4.30)

Where J |0〉 = |ψ(0)〉. Lets assume that J = a†r where r is a positive integer, which

we can do since normal ordering would push all the annihilation operators to the right

and a|0〉 = 0 [4][30]. Substituting the result we got from (4.29) in the time evolution

operator, we get this term from the right side of the equation

〈0|eφ∗(t0)aJ |0〉 =
∞∑
n=0

〈n|φ∗(t0)
na†r|0〉 =

∞∑
n=0

〈n|φ∗(t0)
n|r〉 = φ∗(t0)

r (4.31)

Lets now divert our attention to the left side of (4.30), we assume that O = aj since

normal ordering would force all the creation operators to be on the left and Ω is
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invariant under a† [4][30], this becomes

〈Ω|Oe−φ∗(tN )φ(tN )eφ(tN )a†|0〉 = e−φ∗(tN )φ(tN )〈Ω|ajeφ(tN )a†|0〉 (4.32)

= e−φ∗(tN )φ(tN )

∞∑
n=0

φ(tN)
n

n!
〈Ω|aj|n〉 (4.33)

= e−φ∗(tN )φ(tN )

∞∑
n=l

φ(tN)
n

n!

n!

(n− l)!
〈Ω|n− l〉 (4.34)

= e−φ∗(tN )φ(tN )φ(tN)
l

∞∑
n=0

φ(tN)
n

n!
= e−φ∗(tN )φ(tN )φ(tN)

leφ(tN ) (4.35)

Thus, (4.30) becomes

〈O〉(t) =
( N∏

n=0

∫
dφdφ∗

π

)(N−1∏
n=0

(1−∆tφ∗(tn−1)
γφ(tn)

σ
)
e−

∫
dtφ∂tφ∗ (4.36)

e−φ∗(tN )φ(tN )φ(tN)
leφ(tN )φ∗(t0)

r (4.37)

Taking the continuum limit (∆t→ 0)

〈O〉 =
∫
Dφφl(tN)e

φ(tN )−φ∗(tN )φ(tN )+
∫
dt(φ∂tφ∗−φ∗(tn−1)γφ(tn)σ)φ∗(t0)

r (4.38)

For the sake of simple notation, we perform what is called a DOI shift [17]

φ̃(t) = φ∗(t)− 1 (4.39)

Therefore, (4.30) becomes

〈O〉 =
∫
Dφφl(tN)e

φ(tN )−(φ̃(tN )+1)φ(tN )−
∫
dt(φ∂tφ̃+φσ(φ̃+1)γφ∗(t0)

r (4.40)

Integrating the
∫
dtφ∂tφ̃ term by parts

∫
Dφφl(tN)e

φ(tN )−(φ̃(tN )+1)φ(tN )−φφ̃|tNt0 −
∫
dt(φ̃∂tφ+φσ(φ̃+1)γ)φ∗(t0)

r (4.41)
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=

∫
Dφφl(tN)e

φ(tN )−φ̃(tN )φ(tN )+φ(tN )−φ(tN )φ̃(tN )+φ(t0)φ̃(t0)−
∫
dt(φ̃∂tφ+φσ(φ̃+1)γ )φ∗(t0)

r

(4.42)

=

∫
Dφφl(tN)e

−
∫
dt(φ̃∂tφ+φσ(φ̃+1)γ)φ∗(t0)

r (4.43)

where we have dropped the boundary term φ(t0)φ̃(t0), the expectation value of our

operator becomes 1

〈O〉 =
∫
Dφφl(φ̃(t0) + 1)reH0 (4.44)

where

H0 =

∫
dt
(
φ̃∂tφ+ φσ(φ̃+ 1)γ

)
(4.45)

We are now in a position to Fourier transform. Lets define the Fourier transforms as

follows [4]

φ(k, ω) =

∫
dtddxφ(x, t)eiωt−ikx (4.46)

φ(x, t) =

∫
dω

2π

ddk

2π
φ(k, ω)e−iωt+ikx (4.47)

The DOI-shifted term is a bit tricky, let us perform the Fourier transform of it explicitly

φ̃(ω) =

∫
dtφ̃(t)eiωt =

∫
dt(φ∗(t)− 1)eiωt

=

∫
dtφ∗(t)eiωt −

∫
dteiωt = φ∗(−ω)− 2πδ(ω) (4.48)

We now move on to Fourier transforming the action (4.45), beginning with the deriva-

tive term ∂tφ

φ̇(t) =

∫ ∞

−∞
dωφ̇(ω)e−iωt =

∫
dω

d

dt
φ(ω)e−iωt

= −
∫
dωφ(ω)

d

dt
e−iωt = −

∫
dωφ(ω)(−iω)e−iωt (4.49)

1Here we are dropping some notation for simplicity
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In perturbation theory, we get the following term in our action [2]

∫ ∞

−∞
dt
(
φ̃(t)φ̇(t) + εφ̃(t)φ(t)

)
(4.50)

Fourier transforming it, we get

∫
dtdωdω′(φ̃(ω′)φ̇(ω) + εφ̃(ω′)φ(ω)

)
= −

∫
dtdωdω′(φ̃(ω′)φ(ω)(−iω)e−i(ω+ω′)t + εφ̃(ω′)φ(ω)e−i(ω+ω′)t

)
= −

∫
dtdωdω′φ̃(ω′)(ε− iω)φ(ω)e−i(ω+ω′)t = −

∫
dωφ̃(−ω)(−iω + ε)φ(ω)

= −
∫

đω
(
φ∗(ω)− δ

2π
(−ω)

)
(−iω + ε)φ(ω) = −

∫
đωφ∗(ω)(−iω + ε)φ(ω) (4.51)

The Fourier transformed action with the extinction term is then

H̃ε = −
∫
dω′(φ∗(ω′)(−iω′ + ε)φ(ω′)

)
− δ(ω′) (4.52)

If it were not for the extra δ(ω′) term, our action would be local in ω. But to find the

path integral, we require it to be in a Gaussian form i.e. 1
π

∫
dxdye−z∗Az = 1

A
, not the

form we currently have

∫
dφ∗dφ

2πi
e−φ̃(−ω)Aφ(ω) =

∫
dφ∗dφ

2πi
e−(φ∗(ω)− δ

2π
(ω))Aφ(ω) (4.53)

We use the following identity [4]

∫
dz∗dz

2πi
e−(z+ζ)∗(z+ξ)(z + ζ)∗n(z + ξ)m = δn,mn! (4.54)

So (4.53) becomes

∫
dφ∗dφ

2πi
e−φ∗(ω)Aφ(ω)e

δ
2π

(ω)Aφ(ω) (4.55)
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=

∫
dφdφ∗

2πi
e−φ∗(ω)Aφ(ω) (4.56)

From there we finally arrive at our Gaussian path integral

∫
DφeH̃ε =

∫
Dφe−

∫
dωφ∗(ω)(−iω+ε)φ(ω) (4.57)

H̃ε now contains both the extinction term ε and the temporal dependence (from the

time derivative). Now to generalize this to a lattice, we incorporate spacial dependence

by summing over the lattice [4]

Hε = −
∑
y

∫
đω(φ∗(y, ω)(−iω + ε)φ(y, ω)) (4.58)

Rescaling becomes part of the normalisation, and the sum
∑

y a
d becomes

∫
ddy, we

then Fourier transform

Hε = −
∫

đω
∫
dyφ∗(y, ω)(−iω + ε)φ(y, ω) (4.59)

= −
∫
dyđωđdkđdk′φ∗(k, ω)(−iω + ε)φ(k′, ω)eiy(k

′−k) (4.60)

= −
∫

đωđdkφ∗(k, ω)(−iω + ε)φ(k, ω) (4.61)

= −
∫

đdkđωφ̃(−k,−ω)(−iω + ε)φ(k, ω) (4.62)

Which we can see is analogous to our Klein-Gordon action

−1

2

∫
dd−1xdtφ∗(x, t)(2+m2)φ(x, t) (4.63)

Now its time to add the diffusion term (particle hopping from y to y+e). The action

for diffusion is

HD = −Q

2q

∫
dt
(
φ̃(y + e, t)− φ̃(y, t)

)(
φ(y + e, t)− φ(y, t)

)
(4.64)
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Using the approximation [4]



φ(y + e)− φ(y, t)

φ(x+ e)− φ(x, t)

.

.

.

φ(z + e)− φ(z, t)


= a∇φ(y, t) +O(a2) (4.65)

The action (4.64) becomes

HD = −Q

2q

∫
dt

∑
y

(
ad

2a2∇φ̃(y, t) · φ(y, t)
ad

+O(a3)
)

(4.66)

Where

a = |ex| = |ey| = ... = |ez|

a is the lattice spacing and ei are the basis vectors.

In order to take the continuum limit (a→ ∞), we must take Q
2q

as a constant C, and∑
y a

d →
∫
ddy

HD = −C
∫
dtddy

(∇φ̃(y, t) · ∇φ(y, t)
ad

)
(4.67)

(The ad gets absorbed into the Jacobian) [4]. Fourier transforming, we get

HD = −C
∫
dtddyddkddk′dωdω′(ik · ik′)φ̃(k′, ω′)φ(k, ω)ei(k+k′)ye−i(ω+ω′)t (4.68)

= −C
∫
dωddkk2φ̃(−k,−ω)φ(k, ω) (4.69)

Our action including extinction and diffusion is then

HDε = −
∫
ddkđωφ̃(−k,−ω)(−iω + Ck2 + ε)φ(k, ω) (4.70)
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So the expectation value of an observable is given by

〈O〉(x, t;x0, t) = 〈φl(x, t)
(
1 + φ̃(x0, t0)

)γ〉 = ∫
Dφφl(x, t)eH

(
1 + φ̃(x0, t0)

)γ (4.71)

4.3 The Propagator

We are now in a position to write down our response propagator, which describes how

our system responds after probing it at an initial time

〈φ(k, ω)φ̃(k0, ω0)〉 (4.72)

=

∫
Dφφ(k, ω)φ̃(k0, ω0)e

−
∫

đdkđωφ̃(−k,−ω)(−iω+Ck2+ε)φ(k,ω) (4.73)

=
δ
2π

d
(k + k0)

δ
2π
(ω + ω0)

−iω + Ck2 + ε
(4.74)

For any correlator

〈φ(k1, ω1)...φ(kn, ωn)φ̃(k
′
1, ω1)...φ̃(k

′
m, ω

′
m)〉 (4.75)

Wick’s theorem states [26]

〈φ(k1, ω1)...φ(kn, ωn)φ̃(k
′
1, ω1)...φ̃(k

′
m, ω

′
m)〉 = 〈φ1φ̃1〉...〈φnφ̃n〉+ 〈φ1φ̃2〉...+ ... (4.76)

In which (4.75) equals 0 for n 6= m with n,m ∈ N We can write our bare propagator

as

〈φ(k, ω)φ̃(k0, ω0)〉 =
δ

2π

d

(k + k0)
δ

2π
(ω + ω0)G0(k, ω) (4.77)

with G(k, ω) = 1
−iω+Ck2+ε

. It will prove to be useful to inverse Fourier transform our

bare propagator (4.77), beginning with the time component

∫
đωđω0e

−iωte−iω0t0
δ

2π

d

(k + k0)
δ

2π
(ω + ω0)G0(k, ω) (4.78)
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=
δ

2π

d

(k + k0)

∫
đωe−iω(t+t0)G0(k, ω) (4.79)

Inverse Fourier transforming G0

G0(k, t) =

∫
đωG(k, ω)e−iωt (4.80)

=

∫
đω 1

−iω + Ck2 + ε
e−iωt = θ(t)e−t(Ck2+ε) (4.81)

Our Fourier transformed propagator is then

∫
đωđω0e

−iωte−iω0t0〈φ(k, ω)φ̃(k0, ω0)〉 =
δ

2π

d

(k + k0)

∫
đωe−iω(t+t0)G0(k, ω) (4.82)

=
δ

2π

d

(k + k0)

∫
đωe−iω(t+t0)

1

−iω + Ck2 + ε
= θ(t− t0)e

−(t−t0)(Ck2+ε) (4.83)

Where θ(t) is our Heaviside function, which tells us we have no particle density to

measure at negative time [2]. We can read from this result that the k = 0 term

remains only if there is no particle extinction.

Inverse Fourier transforming to get the spacial component, we get

∫
đdke−tCk2

eik·x =
1(

4πCt
) d

2

e
−x2

4Ct (4.84)

Thus, the diffusion starting at x0, t0 with extinction rate ε is

〈φ(x, t)φ̃(x0, t0)〉 = G0(x− x0, t− t0) = θ(t− t0)
e−(t−t0)ε(

4πC(t− t0)
) d

2

e
− (x−x0)

2

4C(t−t0) (4.85)
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4.4 The Source Term

We now introduce our source term β and treat it perturbatively. Splitting the total

action into two parts [2]

H = HDε +Hβ (4.86)

eH = eHDεeHβ = eHDε

∞∑
n=0

βn

n!
φ̃n(0, 0) (4.87)

where

Hβ =

∫
đdkđωβφ̃(k, ω) δ

2π

d

(k)
δ

2π
(ω) (4.88)

HDε = −
∫

đdkđωφ̃(−k,−ω)(−iω + Ck2 + ε)φ(k, ω) (4.89)

We deduced the form of Hβ from (3.31) bt taking a → φ and a† → φ̃. In order to

calculate the expectation value, we must note the following property [6]

〈O〉Dε = NDε

∫
DφOeHDε (4.90)

〈O〉 = N

∫
DφeH (4.91)

=
NDε

N
〈OeHβ〉Dε (4.92)

In which normalisation forces N = NDε or NDε

N
= 1 [4]. Using these relations, we can

then conclude that the correlation propagator for our action including the source term

becomes

〈φ1...φnφ̃1...φ̃n〉 = 〈φ(k1, ω1)...φ(kn, ωn)e
Hβ〉normal (4.93)

= 〈φ(k1, ω1)φ(k2, ω2)...φ(kn, ωn)
(
1 + βφ̃(0, 0) +

β2

2!
φ̃2(0, 0) + ...+

βm

m!
φ̃m(0, 0)

)
〉

(4.94)

=
βm

m!
〈φ(k1, ω1)φ(k2, ω2)...φ(kn, ωn)φ̃(0, 0)φ̃(0, 0)...φ̃(0, 0)〉 (4.95)
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= βn

n∏
i=1

δ
2π

d
(ki)

δ
2π
(ωi)

−iωi + Ck2
i + ε

(4.96)

=
(β
ε

)n
n∏

i=1

δ

2π

d

(ki)
δ

2π
(ωi) (4.97)

Note that the n! in the denominator cancels with the n! from Wick’s theorem.

Now let’s compute our response propagator

〈φ(k, t)φ̃(k0, ω0)〉 = 〈φ(k, t)φ̃(k0, ω0)e
Hβ〉Dε (4.98)

= 〈φ(k, t)φ̃(k0, ω0)〉Dε (4.99)

=
δ
2π

d
(k − k0)

δ
2π
(ω, ω0)

−iω + Ck2 + ε
(4.100)

Inverse Fourier transforming, we get

θ(t− t0)
e−(t−t0)ε(

4πC(t− t0)
) d

2

e
− (x−x0)

2

4C(t−t0) (4.101)

An interesting case is when n = 1 in (4.97)

〈φ(k, ω)〉 = β〈φ(k, ω)φ̃(0, 0)〉Dε =
β

ε

δ

2π

d

(k)
δ

2π
(ω) (4.102)

Performing the inverse Fourier transform give us

〈φ(x, t)〉 = β

ε
(4.103)

This suggests that there is always a uniform background particle density present.

However, this contradicts our result for (4.101), which suggests that the contribution

of the field at an initial time eventually vanishes. Where is the inconsistency?

This issue is arising because we are calculating the wrong correlation function, what

we want to calculate is 〈φ(x, t)φ∗(x0, t0)〉, and this is because our creation operator
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corresponds to φ∗ rather than φ̃ [4]. Our desired propagator is then

〈φ(x, t)
(
1 + φ̃(x0, t0)

)
〉 = 〈φ(x, t)〉+ 〈φ(x, t)φ̃(x0, t0)〉 (4.104)

We inverse Fourier transform, so (4.104) becomes

β

ε
+ θ(t− t0)

e−(t−t0)ε(
4πC(t− t0)

) d
2

e−
(x−x0)

2

4Ct (4.105)

which agrees of our prediction of always having a background particle density present.
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Chapter 5

Branching

5.1 The Master Equation Revisited

For the final part of this work, we will discuss branching, our analogue for scattering

in Quantum Field Theory. Branching is the process of a particle producing offspring

and then dying off [15]. But how do we write its contribution to our master equation

(3.7)? The influx towards our lattice having configuration {nj} is achieved if a particle

in site j has one particle too little {nj − 1}, and one of the particles turns into two

particles with branching rate σ

σ
∑
i

(ni − 1)P ({ni − 1}; t) (5.1)

On the other hand, the outflow from the probability of our desired lattice configuration

occurs if the lattice was already in said configuration but one particle turned into two

with branching rate σ, resulting in one particle too many

σ
∑
i

niP ({nj}; t) (5.2)
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The branching master equation is then

Hσ = σ
∑
i

(
(ni − 1)P ({ni − 1}; t)− niP ({nj}; t)

)
(5.3)

So ultimately our master equation (3.7) after incorporating branching becomes

d

dt
P ({nj}; t) = H

∑
e

∑
i

(
(ni+e + 1)P ({ni − 1, ni+e + 1}; t)− niP ({nj}; t)

)
+ ε

∑
i

(
(ni + 1)P ({ni + 1}; t)− niP ({nj}; t)

)
+ β

∑
i

(
P ({ni − 1}; t)− P ({nj})

)
+ σ

∑
i

(
(ni − 1)P ({ni − 1}; t)− niP ({nj}; t)

)
(5.4)

5.2 Second Quantisation Revisited

Repeating the process we’ve previously done in section 3.3.1, we proceed to writing our

branching master equation (5.3) in operator form to get our Schrödinger-like equation

d

dt
|ψ(t)〉 = Hσ|ψ(t)〉 (5.5)

= σ
∑
i

∑
{nj}

(
(ni − 1)P ({ni − 1}; t)|{nj}〉 − niP ({nj}; t)|{nj}〉

)
(5.6)

= σ
∑
i

∑
{nj}

(
a†(i)(ni − 1)P ({ni − 1})|{nj − 1}〉 − a†(i)a(i)P ({nj})|{nj}〉

)
(5.7)

= σ
∑
i

∑
{nj}

(
a†

2

(i)a(i)P ({ni − 1})|{nj − 1}〉 − a†(i)a(i)P ({nj})|{nj}〉
)

(5.8)

= σ
∑
i

(
a†

2

(i)a(i)− a†(i)a(i)
)
|ψ(t)〉 (5.9)

For notational convenience, we write our branching operator as follows [4]

Hσ = σ
∑
i

(
a†

2

(i)a(i)− a†(i)a(i)
)
= σ

∑
i

(
ã(i)a(i) + ã2(i)a(i)

)
(5.10)
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where

ã(i) = a†(i)− 1 (5.11)

Since the first term of (5.10) is bilinear, it is essentially a mass shift due to the change in

the present number of particles. The second term is what accounts for the branching.

Translating the operators into fields, the total action becomes

H =

∫
đdkđωφ̃(−k,−ω)(−iω′ + Ck2 + ε− σ)φ(k, ω) +

∫
đdkđωβφ̃(k, ω) δ

2π

d

(k)
δ

2π
(ω)

(5.12)

+σ

∫
ddk1d

dk2dω1dω2φ̃(k1, ω1)φ̃(k2, ω2)φ(−(k1 + k2),−(ω1 + ω2)) (5.13)

We note here that we must enforce ε− σ ≥ 0 to keep the integral from diverging.

Our new bare propagator is given by

〈φ(k, ω)φ̃(k0, ω0)〉 =
δ
2π

d
(k + k0)

δ
2π
(ω + ω0)

−iω + Ck2 + ε− σ
(5.14)

Since we are treating branching in a perturbative manner, we split the action [2]

H = HDε +Hβ +Hσ (5.15)

eH = eHDεeHβeHσ (5.16)

= eHDε

∞∑
n=0

βn

n!
φ̃n(0, 0)

∞∑
m=0

σm

m!

(
φ̃(k′

1, ω
′
1)φ̃(k

′
2, ω

′
2)φ(−(k′

1 + k2
′),−(ω′

1 + ω′
2))

)m
(5.17)

Thus, the expectation value would be

〈O〉 = NDε

N
〈OeHβeHσ〉Dε (5.18)

Where the relation NDε

N
= 1 still holds.

42



Chapter 5. Branching 5.3. AN EXAMPLE

5.3 An Example

Now lets try and see branching in action. As an example, we will compute the first

few terms of the correlator

〈φ(k2, ω2)φ(k1, ω1)φ̃(k0, ω0)〉 (5.19)

Beginning with the case of n = 1 and m = 0 in (5.17)

〈φ(k2, ω2)φ(k1, ω1)φ̃(k0, ω0)βφ̃(0, 0)〉Dε (5.20)

= β〈φ2φ̃0〉Dε〈φ1φ̃(0, 0)〉Dε + β〈φ1φ̃0〉Dε〈φ1φ̃(0, 0)〉Dε (5.21)

=
δ
2π

d
(k2 + k0)

δ
2π
(ω2 + ω0)

−iω2 + Ck2
2 + ε− σ

β
δ
2π

d
(k1)

δ
2π
(ω1)

−iω1 + Ck2
1 + ε− σ

(5.22)

+
δ
2π

d
(k1 + k0)

δ
2π
(ω1 + ω0)

−iω1 + Ck2
1 + ε− σ

β
δ
2π

d
(k2)

δ
2π
(ω2)

−iω2 + Ck2
2 + ε− σ

(5.23)

The first term (5.22) gives rise to the disconnected Feynman diagram 1

φ̃0 φ2 φ̃0,0 φ1

While the second term (5.23) gives

φ̃0 φ1 φ̃0,0 φ2

Inverse Fourier transforming (5.22), we get

∫
dω0dω1dω2e

−iω0t0e−iω1t1e−iω2t2
δ

2π

d

(k2 + k0)
δ

2π
(ω2 + ω0)

δ

2π

d

(k1)
δ

2π
(ω1)G(k2, ω2)G(k1, ω1)

(5.24)

=
δ

2π

d

(k2 + k0)
δ

2π

d

(k1)

∫
dω0dω2e

−iω0t0e−iω2t2
δ

2π
(ω2 + ω0)G(k2, ω2)G(k1, ω1)

(5.25)

=
δ

2π

d

(k2 + k0)
δ

2π

d

(k1)G(k1, 0)

∫
dω2e

iω2t0e−iω2t2G(k2, ω2) (5.26)

1The flow of time is from left to right
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=
δ

2π

d

(k2 + k0)
δ

2π

d

(k1)G(k1, 0)

∫
dω2e

−iω2(t2−t0)G(k2, ω2) (5.27)

=
δ

2π

d

(k2 + k0)
δ

2π

d

(k1)G(k1, 0)θ(t2 − t0)e
−(t2−t0)(Ck2

2+ε) (5.28)

=

∫
ddk0d

dk1d
dk2e

ik0x0eik1x1eik2x2
δ

2π

d

(k2 + k0)
δ

2π

d

(k1)G(k1, 0)θ(t2 − t0)e
−(t2−t0)(Ck2

2+ε)

(5.29)

=
β

ε− σ

∫
ddk0d

dk2e
ik0x0eik2x2

δ

2π

d

(k2 + k0)θ(t2 − t0)e
(t2−t0)(Ck2

2+ε) (5.30)

=
β

ε− σ

∫
ddk2e

ik2(x2−x0)θ(t2 − t0)e
(t2−t0)(Ck2

2+ε) (5.31)

β

ε− σ
θ(t2 − t0)

e−(t2−t0)ε

(4πD(t2 − t0))
d
2

e
− (x2−x0)

2

4C(t2−t0) (5.32)

=
β

ε− σ
G0(x2 − x0, t2 − t0) (5.33)

Inverse Fourier transforming (5.23) in the same manner, (5.20) becomes

β

ε− σ
G0(x2 − x0, t2 − t0; ε− σ) +

β

ε− σ
G0(x1 − x0, t1 − t0; ε− σ) (5.34)

Now considering the case of n = 0 and m = 1 in (5.17)

〈φ(k1, ω1)φ(k2, ω2)φ̃(k0, ω0)φ̃(k
′
1, ω

′
1)φ̃(k

′
2, ω2)φ

(
− (k′

1 + k′
2),−(ω′

1 + ω′
2)
)
〉 (5.35)

= σ〈φ1φ̃1〉Dε〈φ2φ̃2〉Dε〈φ0φ̃0〉Dε (5.36)

= σ
δ
2π

d
(k1 + k′

1)
δ
2π

d
(k2 + k′

2)
δ
2π

d
(k0 − k′

1 − k′
2)

δ
2π
(ω1 + ω′

1)
δ
2π
(ω2 + ω′

2)
δ
2π
(ω0 − ω′

1 − ω′
2)

(−iω1 + Ck1 + ε− σ)(−iω2 + Ck2 + ε− σ)(−iω0 + Ck0 + ε− σ)

(5.37)

= σ
δ
2π

d
(k1 + k2 + k0)

δ
2π
(ω1 + ω2 + ω0)

(−iω1 + Ck1 + ε− σ)(−iω2 + Ck2 + ε− σ)(−iω0 + Ck0 + ε− σ)
(5.38)

This produces the following Feynman diagram

44



Chapter 5. Branching 5.3. AN EXAMPLE

φ̃0

φ2

φ1

Inverse Fourier transforming (5.38), we get

σ

∫
dtddxG0(x1 − x, t1 − t)G0(x2 − x0, t2 − t0)G0(x− x0, t− t0) (5.39)

Therefore

〈φ2φ1φ̃0〉 =
β

ε− σ

(
G0(x1 − x0, t1 − t0) +G0(x2 − x0, t2 − t0)

)
+ 2σ

∫
dtddxG0(x1 − x, t1 − t)G0(x2 − x0, t2 − t0)G0(x− x0, t− t0) (5.40)

Where the factor of 2 comes from swapping φ2 and φ1. However, the same problem

we had in section 4.4 arises; it is apparent that (5.40) doesn’t take into consideration

the effects of the background particle density. That is because we have committed the

same mistake of calculating the wrong observable. What we want instead is

〈φ∗
2φ2φ

∗
1φ1φ

∗
0〉 (5.41)

This correlator is describing the effect of planting a particle at an initial time and

position and measuring the resulting particle densities (a†a) in terms of correlations

at later times and positions [4]. Expanding (5.41) we get

〈(φ̃2 + 1)φ2(φ̃1 + 1)φ1(φ̃0 + 1)〉

= 〈φ̃2φ2φ̃1φ1φ̃0〉+ 〈φ̃2φ2φ̃1φ1〉+ 〈φ̃2φ2φ1φ̃0〉+ 〈φ̃2φ2φ1〉

+ 〈φ2φ̃1φ1φ̃0〉+ 〈φ2φ̃1φ1〉+ 〈φ2φ1φ̃0〉+ 〈φ2φ1〉 (5.42)
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The first four terms of (5.42) vanish since there is no t ≥ t2. The contribution from

the fifth term is

〈φ2φ̃1φ1φ̃0〉 = 〈φ2φ̃1〉Dε〈φ1φ̃0〉Dε (5.43)

= G0(x2 − x1, t2 − t1)G0(x1 − x0, t1 − t0) (5.44)

φ̃1 φ2 φ̃0 φ1

The sixth term is similar to what we previously found in (5.40), the only difference is

that the φ1φ̃1 term vanishes. The contribution is given by

〈φ2φ̃1φ1〉 = 〈φ2φ̃1〉Dεβ〈φ1φ̃(0, 0)〉Dε + 〈φ1φ̃1〉Dεβ〈φ2φ̃(0, 0)〉Dε (5.45)

=
β

ε− σ
G0(x2 − x1, t2 − t1) (5.46)

φ̃1 φ2 φ̃0,0 φ1

The seventh term is exactly the same as what we have already found in (5.40).

The eighth term gives a contribution from both the source and the branching terms.

The contribution solely from the source term arises from n = 2,m = 0 in (5.17)

( β

ε− σ

)2

〈φ2φ1φ̃(0, 0)φ̃(0, 0)〉 =
( β

ε− σ

)2(
〈φ2φ̃(0, 0)〉Dε + 〈φ1φ̃(0, 0)〉Dε

)
(5.47)

=
( β

ε− σ

)2

(5.48)

φ̃0,0 φ2 φ̃0,0 φ1

There is another contribution from the eighth term given from n = 1,m = 1 in (5.17)

βσ

ε− σ

∫
dtddxG0(x1 − x, t1 − t; ε− σ)G0(x2 − x, t2 − t; ε− σ) (5.49)
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φ̃0,0

φ2

φ1

The total contribution is then

〈φ∗
2φ2φ

∗
1φ1φ

∗
0〉

= G0(x2−x1, t2−t1)G0(x1−x0, t1−t0)+
β

ε− σ
G0(x2−x1, t2−t1)+

β

ε− σ
G0(x1−x0, t1−t0)

+
β

ε− σ
G0(x2−x0, t2−t0)+2σ

∫
dtddxG0(x1−x, t1−t)G0(x2−x0, t2−t0)G0(x−x0, t−t0)

+
( β

ε− σ

)2

+
βσ

ε− σ

∫
dtddxG0(x1 − x, t1 − t; ε− σ)G0(x2 − x, t2 − t; ε− σ) (5.50)

Which is in terms of Feynman diagrams is

φ̃1 φ2 φ̃0 φ1
+ φ̃1 φ2 φ̃0,0 φ1

+ φ̃0 φ2 φ̃0,0 φ1
+ φ̃0 φ1 φ̃0,0 φ2

+ φ̃0

φ2

φ1

+ φ̃0

φ1

φ2

+ φ̃0,0 φ2 φ̃0,0 φ1
+ φ̃0,0

φ2

φ1
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5.4. FEYNMAN RULES Chapter 5. Branching

5.4 Feynman Rules

We have now finally arrived at a position to derive Feynman rules based on our results

from the previous section. Note that this work does not discuss loops, so the listed

Feynman rules apply for tree level diagrams only.

• A line from (xi, ti) directly to (xj, tj) gives a factor;

G0(xj − xi, tj − ti; ε− σ)

• A line from a source term directly to (xi, ti) gives a factor;

β

ε− σ

• An interaction vertex at (xi, ti) is integrated over and the vertex carries a cou-

pling factor;

σ

∫
ddxidti

• A line from an interaction vertex at (xi, ti) to (xj, tj) gives a factor;

G0(xj − xi, tj − ti; ε− σ)

• A line from a source term to an interaction vertex at (xi, ti) gives a factor;

β

ε− σ
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Chapter 6

Conclusion

6.1 Summary

To conclude this work, we will briefly re-discuss what was presented in this thesis.

We began by introducing the concept of a stochastic process, which is essentially a

function whose argument is a random variable [6]. We discussed the special case of

the Markov process which enforces ”memory loss” on our stochastic process [5]. A

special case of this is the random walk, which is the underlying concept behind the

development of our lattice system. We then introduce the Poisson processes, and it

becomes apparent later on that the collection of Markovian random walks converges

to a Poisson processes [15].

Moving on to constructing out field theory, we briefly defined the Doi-Peliti approach,

which is the method we use throughout this thesis, and discussed its advantages over

other methods. We then derived our master equation, which describes the change in

the probability of our lattice having a certain configuration, and found a Schrodinger-

type equation to describe the dynamics of our system. Defining operators and states,

we were able to second quantise our system, thus forming a statistical field theory.

We then began the process of finding the path integral in order to enable us to calculate

the expectation values of our operators, permitting us to understand all the possible
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ways our system can evolve. Equipped with the method of discretising time and using

resolution of unity of coherent states, we were able to achieve our objective. We later

invoked perturbative methods in order to deal with our source term, thus reaching the

final form of our propagator.

Finally, we looked at branching, which is the process of one particle producing two

new particles and dying off. We also utilised our perturbation theory toolbox here to

include the branching (or interaction) term, thus finding our new correlator. We then

looked at an example and computed the correlator of two fields and one conjugate

field . This provided us with insight on the nature of particle diffusion throughout a

lattice and showed us that it exponentially decays with a background particle density

always being present. We then illustrated our interactions with Feynman diagrams.

Finally, we summarised our results in a set of Feynman rules.

6.2 Similar Approaches

The methods of field theory gave a lot of insight into the behaviour of critical phenom-

ena [31]. However, there are other methods that proved to accurate in this field. For

example, exact solutions for simple one dimensional models are an excellent tool for

approximate analysis [3]. On the other hand, we have the Langevin equation, which

is a stochastic partial differential equation that describes the time evolution of the

observable rather than the time evolution of the probability distribution function. It

is regarded by many as the most convenient way to describe critical phenomena, espe-

cially for Brownian motion [32][33][34]. One could also use the Fokker-Plank equation,

which is an equation of motion of the probability density [4].

In addition to the DOI-Peliti approach, there are other field theoric methods used

for non-equilibrium critical many particle systems. For example, the lesser known

Martin–Siggia–Rose–Janssen–De Dominicis Field theory that is derived from Dean’s

equation, however it the particle entity in this formalism must be enforced, as opposed
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to the DOI-Peliti formalism in which the particle entity is built into it [35].

6.3 Further Applications

Field renormalisation has been used by John Cardy to study reaction diffusion pro-

cesses for systems with two particle species; namely A + B → 0 and A + A → C

[17]. Taüber uses the renormalisation group (RG) to analyse continuous transitions

from active to inactive absorbing states [36]. The differential renormalisatoin group

(DRG) was also reviewed for ctirical phenomena [37]. Field theoric methods have

been used to study entropy production in active matter systems [38]. Random walks

on lattices have been used to model bacterial dynamics [39]. Additionally, the path

integral approach has been applied to non-equilibrium Bose-Einstein condensates, non

equilibrium quantum processes in the early universe, and non-equilibrium relativistic

heavy ion collisions and disoriented chiral condensates [40].
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